Uncovering Stories of Science in the Flint River

Flint River in Sprewell Bluff Park, Georgia

Creator: Alan Cressler
Copyright: Alan Cressler: All Rights Reserved

By Matt O’Shaughnessy

Hannah Palmer comes from a town that disappeared.

As a child growing up just south of Atlanta in Mountain View, she watched as the steady expansion of Atlanta’s airport slowly took over her neighborhood. The constant roar of jets made Mountain View one of the most noise-impacted neighborhoods in the world; as the airport continued to grow, residents slowly sold their homes to the airport planning agency and left. Soon the city itself was dissolved, removing a physical place from the map but leaving behind a vibrant, if dispersed, community.

The town of Mountain View wasn’t the only thing taken over by the relentless expansion that made Hartsfield-Jackson the busiest airport in the world and transformed Atlanta into a global city. Buried beneath the mammoth airport – under the fifth runway, to be exact – is a tributary of the Flint River, which runs almost 350 miles through Georgia until it joins the Chattahoochee River and flows into the Gulf of Mexico.

Palmer first discovered the Flint River when researching her book Flight Path: A Search for Roots Beneath the World’s Busiest Airport. The book chronicles her search for what became of the community she grew up in – one almost entirely displaced by the growth of the airport.

The history of Palmer’s community echoes that of the Flint River, which has also been overshadowed and buried – literally – by the development of the airport. Even as the airport brought enormous benefits to Atlanta, providing jobs and connecting us to the world, it also threatened to erase the very things that connect us to the place we live.

Palmer now seeks to restore connections between the physical space the airport occupies and the communities that surround it. She sees herself as a storyteller, preserving and sharing the things that make our home more than just a physical place. Science is a central character in these stories, a constant presence in the intimate connections between physical places, the natural world, and the things that make us human. “I love to hear people who remember baptisms, or some urban legends or rites of passage that involve [the Flint River],” she says. “I love to think about times when it was more connected to our lives.”

Finding the Flint

Her research led her to Finding the Flint, a project dedicated to protecting and raising awareness of the Flint River created by American Rivers, The Conservation Fund, and the Atlanta Regional Commission. Part of Finding the Flint’s mission is to build awareness of the natural world and how it influences our communities – a task inextricably connected to science.

Indeed, Palmer sees science as a key element in creating safer infrastructure, building a sense of place, and working toward environmental justice. “How do we clean up this river? What do we do with this landfill? How do we develop alongside this runway or this highway? We can’t turn our backs on these places – they’re not isolated from the rest of the city.”

Palmer’s role at Finding the Flint is one of a science communicator, community organizer, and coalition builder. She works with scientists, engineers, architects, and planners, bringing together stakeholders from environmental groups and local governments to airport planners and Delta Air Lines. The group hopes to work with regional and airport planners to make the airport more than just an engine for economic growth, but also the basis for a thriving community – a place of its own, not just a place people pass through to get somewhere else.

The group works to more deeply involve the public in the health of our watersheds, sponsoring scavenger-hunt-like tours of Flint tributaries, cleanups in the often-overlooked natural areas surrounding the airport, and outreach to airport-area employees. A recent weekend found Palmer organizing the Southside River Rendezvous, where participants learned how to collect water samples, then scattered across Atlanta to sample water quality in dozens of creeks. Finding the Flint hopes that these types of events better connect the public with the people and organizations who advocate for the health of their watersheds, and help build awareness of the natural resources that we often take for granted.

Ultimately, Palmer sees science as a key tool in building connections between people, places, and the environment. “It’s going to be scientists who help solve these problems – who design technologies to extract contaminants from the soil, who design technologies to detect air pollution and noise pollution. These are the landscapes that we’ve inherited, and there’s a huge opportunity to think differently.”

Environmental Action, One Community at a Time

By Christina Buffo

After Dr. Yomi Noibi wrote a newsletter article about toxic chemicals in waterways, the previous Executive Director of Environmental Community Action (ECO-Action) tore it up. Dr. Noibi had written the article following the usual practice taught by his extensive scientific training – a PhD in environmental science from the University of Iowa followed by teaching positions at the University of Wisconsin, the University of Lagos, and Clark University – and he had given equal weight to the communities affected and the companies producing toxic chemicals. And that’s where he had gone wrong. Most publications tended to center the companies and rarely the people affected. “We have to write our own story,” says Noibi, ECO-Action’s current Executive Director.

“Community” is central to the name for a reason: ECO-Action focuses on helping people living in disenfranchised areas across Georgia and changes priorities based on community needs. In Taylor County, they shifted from pollution-fighting to political organizing when residents told ECO-Action that there hadn’t been a local election for ten years. Many volunteers, including Noibi, worked with local organizers and outside legal experts to push for an election in a community- and Black-led initiative. This shift in goals required bringing in new expertise, ECO-Action’s specialty. According to Noibi, the key step in organizing is to “connect people to people that can bring about change.”

And bring about change they did. The combined efforts of Taylor County citizens, lawyers, and ECO-Action resulted in an election, and the voters elected the first few African Americans to the Taylor County Board of Commissioners, ensuring that the board demographics better reflected that of the county. The new board members could then act on environmental issues.

Learning Together

Organizing is always a learning process. No one person or field could have addressed all the problems in Taylor County, but a coalition of people with different backgrounds and skills had a major impact. ECO-Action does not market itself as the entire solution: it’s simply the catalyst that makes these connections, and then everything else, happen.

The importance of learning from others applies beyond doctors, lawyers, and scientists. ECO-Action hosts discussion groups for different generations of Atlanta area residents to discuss local concerns together. Dr. Noibi says that these groups are founded with the idea that everyone, from a six-year-old to her grandparents, has an important perspective on their living environment and issues present in it, and that only through learning from each other can action occur. In Dr. Noibi’s words, “We have to work and learn together. First we have to learn together. Then we have to work together.”

ECO-Action Programming

Many participants in ECO-Action’s programs, such as the Intergenerational Learning Group and the Community Watershed Learning Group, mention their surprise that environmental concerns are only part of the program.  A training or discussion group isn’t solely about sewage leaks, or tire dumping, or floodwater management. “It’s about injustice,” says Noibi. “It’s about thinking outside the box, because you cannot address environmental problems with the current framework of thinking.”

Part of the shift outside of this current framework needs to be legal. In alleged water contamination, the people affected often are legally required to demonstrate the presence of pollutants. This, emphasizes Noibi, is unfair for many reasons. First, the people living in a contaminated area may not have access to pollutant testing or the money to pay for it. Second, some chemicals may be toxic in smaller amounts than current laws suggest, and the health consequences of other pollutants may not yet be clear. Lead from water pipes, for example, was considered safe at one time. Most importantly, the burden of proof falls unjustly on the people impacted, who already suffer health damage from pollution. The brutal reality is, says Noibi, that at the end of the day, “we’re the ones exposed, we’re the ones burying the body.”

The other important step towards a more just world lies in the perception of science. Scientific training emphasizes a “science as solution” mindset at the expense of considering how science results are used. A more just outlook, suggests Noibi, would involve thinking “that science is the answer, no. Science is a tool to help get the answer. The answer is in the people.”

The Comedy of Science

Three people laughing and having a conversation on stage

Dr. Lew Lefton headshot

Dr. Lew Lefton

By Stella Mayerhoff

While science and humor appear to be mutually exclusive fields, Dr. Lew Lefton, Faculty in the Department of Mathematics and Associate Vice President for Research Computing at Georgia Tech, has bridged these two seemingly distant worlds by performing science comedy and investigating the science of comedy.

Lew began performing standup as a hobby while a graduate student in the 1980s, just as cable television roused a public love for comedy. “As a performer,” Lew says, “you’re there to serve the audience.” Catering to his audiences from the scientific community and the public, his sets highlighted aspects of both his professional career and what was then an emerging hobby. Today, Lew continues to bridge these two passions, making science the subject of his comedy; “Comedy is the noun; science is the adjective.”

The Science of Comedy

All the time spent crafting science comedy led Lew to become increasingly interested in the inverse relationship between the two: comedy science, a field still relatively unstudied. Some who study the subject propose that comedy is unique to humans due to psychological phenomena associated with humor. For example, humans demonstrate theory of mind—or the ability to consider the perspective of others—but there is debate as to whether (and the extent to which) other animals exhibit this cognitive ability.

Comedy often relies on theory of mind; the comprehension of another’s point of view can help an audience understand the humor in a comedian’s story or a comedian recognize whether the audience might find a joke too offensive or outdated. It’s these complex cognitive abilities that may prove humor to be the ultimate Turing test, as they can’t be coded precisely through machine learning.  However, progress in this research is difficult without a way to measure and quantify humor. 

What Makes Comedy Funny?

Lew and his colleagues—including Georgia Tech faculty member Dr. Pete Ludovice—have worked to address this obstacle through the Humor Genome Project. As their database of humor-related content grows, so does their ability to perform quantitative analyses on various components of humor. The science of comedy has already boasted important results–including benefits of humor in coping with anxiety and depression–and has potential findings in numerous areas such as human health and social behavior.

One group already jumping into these data are Lew’s students; he offers a project-based data analytics course at Georgia Tech in which students analyze data on humor from the Humor Genome Project. This creative approach to studying machine learning, computational analysis, and theories of behavior and cognition has great promise for gaining a better understanding of the science behind comedy. 

“Things that make you laugh and then think—that’s the sweet spot.”

Beyond illustrating the relationship between science and comedy, Lew also emphasizes the ways it can benefit both comedians and scientists. He suggests that comedians take note of the science around them; not only can they benefit from understanding the science of comedy but understanding science will only give them a more informed voice to use on their platform. Scientists, on the other hand, should not only consider comedy another tool for telling their research story but also a great form of entertainment to enjoy. After all, anyone can benefit from a good laugh—there’s science to prove it! As for his personal take on what makes for great comedy, he suggests, “…things that make you laugh and then think—that’s the sweet spot.” 

How to Get Involved in Atlanta Comedy

Atlanta has a rich comedy scene with a diverse array of opportunities for performing. Though joining the comedy scene as a first-time performer may seem daunting, Lew recommends learning by doing! Fortunately, Atlanta offers opportunities for aspiring comedians to practice in both improv classes and open mic nights. If you’re not up for being in the stage lights, numerous Atlanta venues offer comedy shows. Science for Georgia offers comedy events that will let you sit back and enjoy the humor in science and comedy. 

Thank you to Lew Lefton for sharing his time and expertise on comedy! You can see more about Lew Lefton’s work here and explore his impressive collection of April Fool’s jokes here.

Georgia’s Little Grand Canyon: Providence Canyon

Landscape photo of the Providence Canyon in Lumpkin, GABy Misael Romero-Reyes

You are standing in the middle of a deep deep canyon. It has everything it needs to flourish: water, soil, sunlight, and air. There are wild boars at the water table, huge trees, even alligators! Can you believe this magical wonder would not have been possible without humans making reckless decisions while trying to survive?

A Trip to the 1830s

Let’s go back in time. Imagine yourself in the 1830s and what you see is just open land. Land that is ready to be farmed. There are a few trees, so you decide to cut them, you know, for more land to farm. Neighbors mostly grow cotton to support their families, so you decide to farm cotton too. Over time, you notice that cotton just doesn’t grow the same way it did years before, but you don’t worry too much, maybe the soil just has a short lifespan. You decide to go to another piece of land and cultivate cotton there. You move to a piece of land that is uphill because you have learned over the years that cultivating crops on a slope allows more water to get into the soil. 

What was happening to the soil wasn’t normal, and science explains why not. When you are farming (or in this case over-farming), you are removing the topsoil. The topsoil contains the most important nutrients for crops to grow: metals, microbes, and minerals. It also becomes “loose,” so it can be more easily carried away by wind or rain. When these get carried away, the crop won’t get the necessary nutrients and stops producing. 

Providence Canyon in Lumpkin, GA

Decades of soil erosion formed Providence Canyon in Lumpkin, GA

Loose Soil Leads to Erosion

As the land becomes “ungrowable,” a second phenomenon occurs. Erosion is the geological process where inner earth materials are worn away by natural forces. In this case, rain and bad farming practices washed away bits and pieces of soil and sand. Little by little over the course of two centuries, the effects of this became visible in the development of a deep canyon appearing on the old farmland. 43 different colors of soil, layers, and layers going into the inner earth. So much soil was taken away that it cannot go any deeper, it ends at the water table.

The rainwater is removing soil at different rates depending on steepness. Remember when you were farming cotton on a steep slope? Well, it led to erosion happening from all sides, and if you look at the deeper and deeper parts of the earth you will see that there is one color in common: red-orange, and this indicates the presence of the metal iron (Fe) because it gets dissolved as water travels through the sediment, then it oxidizes (unites with oxygen), and it’s precipitated at different depths staining the soil in different colors. 

The History of Providence Canyon

Now flash forward to today. All of this happened in a small town in Georgia called Lumpkin. The farming was improperly managed during that time, and unfortunately, Providence Canyon formed in a few decades due to the erosion and the overcropping that happened. Thankfully, we are now aware of the damages we were doing to the environment. President Jimmy Carter bought the land in 1970 and established it as a 1,000-acre conservation area. A lot of trees were planted, and this land regained a little bit of its former lush beauty. Trees reduce the amount of storm runoff, which reduces erosion, and they also serve as food and shelter to many organisms. Through conservation, plants and animals began to thrive in Providence Canyon. 

One of Georgia’s Natural Wonders

Providence Canyon is one of the “natural” wonders of Georgia. It has much resemblance to the Grand Canyon out west. If you haven’t had a chance to visit, you should! And remember that those red colors and imperfect surfaces happened because of the damage many human practices do to the earth. Despite its beauty, the history of Providence Canyon is also a reminder that if we remove vital elements of earth, we must also take steps to protect it from future damage.

The Hitchhiker’s Guide to the Makerverse!

Close-up shot of a young woman in a makerspace working on a project.

By Malvern Madondo

Ever wanted to make something, but weren’t sure how or where to start? Don’t have the tools? Afraid of making mistakes? Not sure what a makerspace is or how to be part of one? Don’t panic!

There is a dedicated place in the metro Atlanta area where anyone can discover and channel their inner creativity and bring ideas to fruition – Decatur Makers! Decatur Makers is one of the few family-friendly and all-ages makerspaces in Georgia. It was founded in 2012 and is housed in a refurbished old gym that was previously a roller-skating rink. I recently met with Irm Diorio, the Executive Director (Maker in Charge?) at Decatur Makers, to learn more.

What exactly is a makerspace?

According to Irm, “a makerspace is a playground for your creativity, a space to learn, build, innovate, try new things, and make mistakes. Most important of all it is a community of people”. One member, Steve Freant, took this to heart and built a car at Decatur Makers using recycled materials! With the help of fellow members at Decatur Makers, Steve learned skills such as metalwork in order to bring his grand vision to reality.

A hobbyist woodworker with a background in marketing and advertising, Steve got attracted to metalwork because he did not have to wait for pieces to dry. He tapped into the vast experiences of other members at Decatur Makers who were only eager to share their expertise. Steve is now on a mission to build his second car at Decatur Makers!

“A makerspace is a playground for your creativity, a space to learn, build, innovate, try new things, and make mistakes.”

Images of the Stevemobile, created by Freant with the help of several members at Decatur Makers.

Images of the Stevemobile, created by Freant with the help of several members at Decatur Makers.

Perhaps not as difficult as finding the answer to the “Ultimate Question of Life, the Universe, and Everything”, building a car, let alone driving it in Atlanta, is not always an easy task. It takes dedication, and a willingness to learn. Makerspaces provide community space to turn creative dreams into reality. 

So, you have an idea?

Decatur Makers lives its mission: “Empowering people to create and learn through hands-on experiences that positively impact their lives and communities” in its daily operations. Whether you are just starting out, merely curious, or an expert, Decatur Makers welcomes you. According to Irm, “Everybody is a maker … but we’re not just about the making of things, we’re about making a difference. Making fosters life-changing experiences where kids and adults find passions, learn hard skills, and develop and strengthen the soft skills of problem-solving and critical thinking.

Decatur Makers sign

Image credit: Maureen Haley

This type of success positively impacts people of all ages by empowering them in all areas of their life.” The process takes time and often requires experimenting with different approaches and developing multiple versions. However, a sense of curiosity and lots of patience can lead to a more refined result that not only solves the initial problem but also provides insights into solving similar problems. The making journey continues as community members share their knowledge with one another.

In its 8 years of operation, Decatur Makers has used this model of continual improvement and made quite an impact in the Atlanta community and beyond. The story goes that it all started when some local Decatur kids needed a place for their robotics team to practice. A few parents, prompted by Decatur Makers founders Garrett Goebel and Lew Lefton, took it a step further and thought a place where a diverse group of kids and adults could use tools and work together to learn skills and build things would be a great resource for our community. Years later, their idea has blossomed into a maker community that supports the learning, creating, and innovating that comes with making all kinds of things. 

From idea to product and product to more ideas

If you have a solid idea (the idea can also be in shaky liquid form or vague gaseous form) of what you want to create, do not hesitate to get to the drawing board and reach out to the maker community for help, advice, or anything you need to bring that idea to fruition. Decatur Makers features a fully equipped wood shop, an electronics shop, and a metal shop. They also have an array of 3D printers, a Glowforge Pro laser cutting/engraving system, a CNC milling machine, a HAM radio station, a microbiology lab, sewing machines, arts and crafts equipment, leather crafting tools, and a 4-color screen printing system.

Feeling overwhelmed? Don’t panic! Decatur Makers also offers a variety of introductory classes such as Woodshop 101, Intro to 3D Printing, Glowforge 101, Metal Lathe 101, Wood Lathe 101, and Welding Machine Basics.

Who let the dog out?

Maureen applied several techniques such as laser cutting, woodwork, 3D printing, and electronics to make her alert system.

Maureen applied several techniques such as laser cutting, woodwork, 3D printing, and electronics to make her alert system.

Another maker, Maureen Haley, has witnessed first-hand the importance of having a community where individuals can start from basics, tap into the experiences and wisdom of peers, make something they are proud of, and share the knowledge with others. Around 2012, Maureen was trying to learn some programming skills so she could build projects with her new Arduino beginners kit from Adafruit.com. This endeavor led her to two amazing opportunities.

First, she signed up for what was then MITx’s initial Massive Open Online Class about Circuits and Electronics, which dramatically opened her mind to resources available to adult learning online. Second, she came across a suggestion online to look for local hackerspaces on Meetup.com. This led her to a nearby group meeting, which was the early gatherings of Decatur Makers. At this meeting, she met Irm Diorio, and together they “started building a thriving, open-source, magical community of do-it-yourselfers, closet instructors, brilliant creatives and enthusiastic makers.” One of her proudest accomplishments at Decatur Makers is a top-notch monitoring system that she created to alert her brother whenever his dog, Skipper, snuck outside the house.

Maureen’s path to creating the most ingenious DIY pet alert system started right after Decatur Makers acquired a Glowforge laser cutter and started offering introductory/safety classes. The laser cutter became popular among makers who would often use the free software Inkscape to create a luggage tag or key chain fob with their name on it. While Maureen was waiting for her turn to upload a tag and practice using the machine, she picked up some scrap acrylic that was lying around the makerspace and designed a small engraving with a dog on it. (Unfortunately, when she uploaded a picture of Skipper, the details were not as distinct, so she opted for a silhouette of a dog that resembled Skipper). She then took her laser-cut piece of acrylic home and wired up some LEDs to make the light shine through. Next, she supported the engraving, using wood as a base. The next challenge was connecting all the components together!

Collage of progress photos from Maureen's pet alert system design

Maureen’s pet alert system, from sketch to functional product.

Being a recent graduate of Decatur Makers Woodshop 101 class, she made a jig to guide a handheld router and created a recess on the bottom of a dark wood chunk that a fellow maker had donated, to hold a strip of lights, and another recess on top to hold the piece of acrylic. Maureen then ingeniously connected a power jack to a piece of protoboard, wired up an on/off switch, programmed a microcontroller, and engraved the Decatur Makers logo onto the wood! She queried the woodshop community for oil coating recommendations to keep the wood from drying out and give it a rich color. Finally, to cover the bottom where the electronics were, she used a free program called Tinkercad to design a small lid/tray and printed it on the 3D printer at Decatur Makers.

By the time she was done, Maureen’s project was a complete tour of the makerspace – laser cutting, woodwork, electronics, and 3D printing. Besides providing her with the resources she needed to help her brother track his furry friend’s movements, Decatur Makers made it possible for Maureen to use tools like laser cutters and 3D printers that she otherwise would have had to buy. Moreover, she benefited from other makers who were ever ready to share their skills.

How to get involved with Decatur Makers

At Decatur Makers, everyone, regardless of interests or skill levels, is welcome to join a vibrant and growing community of makers. Throughout the year, Decatur Makers hosts a variety of events such as the weekly informal Maker Happy Hour and Open Build Night that are open to anyone interested in learning more about makerspaces or sharing about a project they have worked on. Decatur Makers also organizes classes such as papermaking, stained glass making, woodworking, 3D printing, and laser cutting. You can check out their class offerings, public events, or donate to support their operations at https://decaturmakers.org/. If you have never visited, check out their virtual tour on YouTube (https://youtu.be/IQDuVG61NSI).

Decatur Makers fitted Chase as Bruno Mars in a 1985 Lincoln Town Car Stretched Limousine.

Decatur Makers fitted Chase as Bruno Mars in a 1985 Lincoln Town Car Stretched Limousine.

Decatur Makers has also partnered with various other nonprofit organizations, institutions, and makerspaces. Under the Atlanta Beats Covid initiative, Decatur Makers partnered with other makerspaces and volunteers to create Personal Protection Equipment (PPE) to curb shortage in the state of Georgia. “We are always looking for community partners because we’re only as rich as the people we work with,” said Irm.

In 2018, Decatur Makers partnered with Magic Wheelchair, a nonprofit organization that builds “epic costumes for kiddos in wheelchairs — at no cost to families”, to create TWO amazing Halloween costumes for two metro Atlanta kids – Chase and Armani. Chase dressed as Bruno Mars from the Uptown Funk video (complete with wheelchair transformed into a 1985 Lincoln Town Car Stretched Limousine) and Armani dressed as a zombie on the bus from Black Ops 2 (Call of Duty).

Decatur Makers also fitted Armani as a zombie on the bus from Black Ops 2 (Call of Duty).

Decatur Makers also fitted Armani as a zombie on the bus from Black Ops 2 (Call of Duty).

Many thanks to Irm Diorio for highlighting all the amazing work being done at Decatur Makers. Thanks also to Steve and Maureen for sharing about their work!

The Science of Social Dancing

Social dancing is all about force - a push or a pull that changes an object’s motion.

Social dancing is all about force – a push or a pull that changes an object’s motion.

By Veronica Montgomery

Two people meet on the dance floor and form an elegant silhouette. A sparkly dress flares during a double spin. Everyone catches their breath during a lift, only to grin in excitement and relief once both feet are on the ground. Whether watching it on screen or doing it yourself, it is hard to deny that sense of glamor that comes with a well-executed partner dance. 

Shows like Dancing with the Stars and So You Think You Can Dance have brought social dancing to the limelight. Besides looking cool, dancing is fun, is a great workout, and may actually make people happier according to several research studies. However, many people feel excluded from this world of dance because they are intimidated by the fear of not knowing what to do. 

Physics is the Language of Social Dancing

Professional shot of scial dancing dancers Kristen Anne (left) and Ashwin Raju (right)

Kristen Anne (left) and Ashwin Raju (right)

The good news is that while dancing looks super intimidating, it is very learnable because a lot of it is based on physics! Social dancing is all about force – a push or a pull that changes an object’s motion. In dancing, the direction and strength of forces are used to tell dancers how to move. Forces come from all over, including contact between the lead and follow, the muscles and joints within each dancer’s body, and gravity.

“A lot of the more intricate parts [of social dancing] are not something you can see… somebody needs to explain the inner workings and the mechanics of it,” says Ashwin Raju, who co-owns Aatma Dance Studio with his wife, Kristen Anne. Ashwin and Kristen have each been dancing for over a decade and teach salsa and bachata at their Atlanta-based studio from beginner level to performance-ready.

“In salsa or any partner dance, there is a lead and a follow. Whatever is in the lead’s head needs to be communicated to the follow, and the only way the follower can listen to the lead is through the body,” Ashwin explains. Forces are the words in the language of social dancing. When a lead wants the follow to move in a certain way, he applies a specific force to communicate what to do. 

The concepts of frame and connection allow the follow to interpret this force and translate it into a movement. In dance, frame refers to how you hold your upper body. Good posture as well as engaged back, core, and arm muscles are key to a good frame. When these muscles are engaged, the forces within the body make the entire torso move as a single unit, allowing subtle cues from the lead to be translated into big movements from the follow.     

Ashwin and Kristen Anne stand facing each other with their palms pressed together.

Connection describes the interaction between the lead and follow’s bodies.

Connection describes the interaction between the lead and follow’s bodies. With proper connection, the lead and follow are applying the same amount of force to each other, so that the follow has some resistance to any forces coming from the lead. “We make the leads and follows get into a palm-to-palm connection and lean into each other. Like planking against each other. We ask the ladies to close their eyes and we ask the leads to walk around the floor backward and forward without letting the follows know where they are going,” says Ashwin.

In physics, resistance is an opposition to the flow of energy. We hear a lot about resistance in circuits, but it is also important for dancing. Resistance lets us convert energy into a practical form, like a light in a circuit. A lead uses energy to apply force to the follow. A follow with “noodle arms” has little or no resistance to this energy, so her arms flail in the direction of the force without engaging the rest of the body. A follow with too much resistance applies so much counterforce that the lead is unable to move her. The right balance is learned through training and practice. 

Torque is a twisting force that can cause an object to rotate. When a lead signals for a follow to turn, he guides her arm in the direction of the turn. Because the follow is dancing with a strong frame, her entire torso follows this cue, which creates a tension (torque!) between her upper and lower body. Ashwin compares the changes in the follow’s body to that of a car going into sports mode, “once you start turning, everything kind of tightens up. All the joints are like springs and all the springs sort of tighten up. That means when one side moves, everything else reacts. Head to toe everything is connected.” The internal forces that connect the follow’s torso to her lower body cause the rest of her body to follow through with the turn. If the lead turns the follow too aggressively and she loses balance, they are reminded of another force always at work – gravity. 

When using the right technique, communicating during a dance becomes almost effortless. As Kristen explains, when connection and frame are in place “you really don’t have to think what direction you’re going in because it just feels so natural.” 

Teaching Robots the Language of Dance

Lea Ting (left) and Madeline Hackney (right)

Lea Ting (left) and Madeline Hackney (right)

Professor Madeleine Hackney at Emory University echoes this sentiment, “if you’re dancing with a skilled leader…you don’t even need to think about it at all, it just happens.” The underlying concepts of physics that dictate many aspects of partner dance mean that two complete strangers can dance without a glitch, as long as they both know the rules.  Taking advantage of this established “language”, Professors Madeleine Hackney and Lena Ting at Emory University are designing robots for partner dance in order to provide physical therapy for Parkinson’s patients. “We liked partner dance because there was already a codified sort of structure and language,” Lena explains. 

Parkinson’s Disease is a disease of the nervous system that causes tremors, muscle stiffness, slowed movement, and balance problems. Madeleine was a professional dancer before becoming a neuroscience professor, and she has used her background to adapt Argentine Tango as a rehabilitation treatment program for Parkinson’s patients: “the knowledge base that I developed as a partner dancer is super important for this because I have taught countless individuals how to move in conjunction with another person… I know the rules of partner dance — be it tango, or salsa, or swing, or any of these — and how we communicate motor goals in very, very subtle ways.” 

Tango therapy has been surprisingly effective. Madeleine has found that her tango classes can improve balance and gait in her patients. When Lena learned about Madeleine’s work, she wanted to contribute her expertise in robotics to bring this therapy to people on a larger scale. By designing robots that can lead and follow, Madeleine and Lena believe they can make tango therapy more accessible. “The idea with rehabilitation robots in general [is] you want to emulate what the therapist is doing and basically allow people to have therapy more often… and maybe in a place where they can’t normally get it,” Lena explains.  

The problem is that robots need to be programmed to give and respond to the forces we use to communicate in dance, and it is hard to define exactly what ‘natural’ feels like. “One of the problems in robotics is we don’t know how to get a robot to really touch and interact with a human being in a caring, gentle way” explains Madeleine. “That’s why it was so cool to meet with Lena because she’s got all the skills with engineering, so then by partnering with her we’ve been able to answer some of these questions.” 

Analyzing Physical Communication in Dance

Professors Lea Ting and Madeline Hackney take many measurements analyzing the distance, time, and forces associated with dancing.

As research partners, they are studying the physical interactions between people in order to better understand the communication that happens in dance. “We started on a set of studies looking at two people interacting in a stepping paradigm to understand principles of the force communications,” says Lena. They have studied expert dancers as well as complete beginners, and in doing so, they have begun to be able to define what qualities make for a good dancer. 

They take many measurements analyzing the distance, time, and forces associated with dancing. For example, they measure the distance between two people’s chests, the lag time between when the lead moves and when the follow moves, or the force a lead uses to signal to a follow. “You start to realize how powerful this communication, physical communication, is because you ask people to close their eyes and they do better,” Lena explains.

“We were surprised that experts were using greater forces than novices… but in general what’s surprising is the forces are really low… so they’re definitely not pushing people.” She goes on to say, “We think about frame, and I think that is really important, the stiffer you are… means you can have more resistive force. With the experts, I think they do that so that for a smaller movement, you get a higher force, so the signal is much higher. I think that’s what frame does; it really increases the speed of transmission of the signal.” Lena and Madeleine are working to quantify what makes a good frame, so that they can program their robots to automatically dance with the technique that might take a human dancer years to perfect. 

Ashwin and Kristen post while dancing

“When using the right technique, communicating during a dance becomes almost effortless.”

Social dancing with a partner is like a language with its own set of rules for communication. Learning how to maintain a frame and how to correctly apply and respond to forces allows us to understand dance cues quickly. Much like verbal communication, once you internalize the basic rules, you can communicate in dance almost without thinking. If you are interested in joining the conversation, consider taking salsa or bachata lessons with Ashwin and Kristen at Aatma Dance Studio, and come try it yourself at one of their socials! Also, if you or someone you know has Parkinson’s Disease or mild cognitive impairment and would be interested in participating in one of Lena and Madeleine’s ongoing studies, please reach out to Madeleine at [email protected].

Thank you to Ashwin and Kristen Anne at Aatma Dance Studio, as well as Professors Lena Ting and Madeleine Hackney! For more Awesome Science of Everyday Life features and other science updates, follow Science ATL on FacebookTwitter, and Instagram!

 

The Science of Vegan Baking

Tray of freshly made vegan apple cider doughnuts

Tray of freshly made vegan apple cider doughnuts

By Dené Voisin

By 9 PM on a Thursday night, most businesses in Atlanta’s Historic West End have already closed for the night. Business is still buzzing for Vegan Dream Doughnuts, located across the street from the Mall at West End. One bite into their gluten-free, mouth-watering donuts explains it all. They’re bursting with flavor, surprisingly light, and made without any refined sugars. Most importantly for vegans, they’re made without any animal products. Nearing midnight, there is still a steady flow of customers, confirming something that those of us without dietary restrictions might overlook- vegans have a sweet tooth too. Founder and self-taught chef Ras Izes is committed to filling that need without the excess calories and refined sugars that have come to define one of America’s staple breakfast items. “It brings people together, like, you can’t hate a donut,” he states, readjusting the quickly disappearing stock of donuts in the display case. As a Rastafarian for most of his adult life, Izes only eats ‘ital’ (plant-based) foods and has found a passion in creating delicious dishes and donuts that can be enjoyed by everyone – vegan or not.

Plant-based power

According to a Forbes magazine article, the number of American consumers identifying as vegan grew 600% between 2014 and 2017. A release from PlantBasedFoods.org stated that plant-based food sales grew 8.1% from 2016-2017, highlighting the growing market for vegan-friendly foods. This trend has been accompanied by an increase in Google searches for ‘vegan baking’ over the last decade with upticks especially around the holiday season.

It brings people together, like, you can’t hate a [vegan] donut.” – Ras Izes

Making your grandmother’s famous German Chocolate Cake or your uncle’s buttery breakfast croissants completely plant-based may seem like a futile task, but many blogs and websites specialize in the delicate food science of swapping out animal products without sacrificing taste and texture. Vegan baking can be a highly experimental endeavor, but understanding the science behind how milk, butter, and eggs function in baking can ease the journey to sweet, sweet success. 

Move over, milk!

In recipes that require milk, its primary functions are usually moisture, sweetness, and structure. “I’m not sure milk is 100% necessary in the way that it has to be (cow’s) milk,” says baker Ashley Hay. She says it’s not that common of an ingredient in recipes and it’s much easier to replace. Hay adds, “It does have some flavor and fat content, but mostly I think it’s there for the liquid content.” A 13-year veteran baker and head decorator at Publix bakery, Ashley helps make between 15-30 full-sized cakes a day, plus smaller items like pies, tarts, and macarons. 

When its role is moisture, milk forms gluten chains with the flour to give the cake structure- a function easily filled by accessible milk alternatives. “In a box (cake) mix, they call for water, not milk,” she says. On replacing milk, Ashley notes that looking for an alternative that matches the fat content of the dairy in a recipe is a quick and simple swap out.

Whipped aquafaba

Aquafaba is made from leftover water in canned chickpeas and can be whipped into a meringue and flavored for desserts.

Heavy cream, which is higher in fat content, is mainly used in toppings as a base for whipped cream. Ashley mentions that aquafaba, the water leftover in canned chickpeas, can be whipped into stiff peaks and flavored for desserts. Non-dairy whipped toppings are becoming increasingly popular in major grocery chains, with options like ready-to-pipe coconut milk and nut-milk whipped toppings already hitting shelves around Atlanta. 

Butter, y’all?

From breakfast to dessert, butter is a key ingredient for decadent cakes and flavorful rolls to fluffy biscuits and flaky croissants. Butter and other fats function as ‘shortenings’ whose function is to ‘shorten’ the formation of gluten protein when flour is mixed with moisture. This prevents the elastic structure and resulting chewiness of breads when a ‘melt in the mouth’ feel is the desired outcome. For Ras Izes at Vegan Dream Doughnuts, coconut flour provides him a soft, ‘melt-in-your-mouth’ donut, free of the gluten chains that would require additional fats. Coconut flour is derived from the flesh of coconuts and contains a fair amount of saturated fat already. It is likely that the absence of gluten and the presence of this fat gives coconut flour a shortcut to ‘shortening’, reducing the need for additional calories while preserving the crumbly mouthfeel many recipes aim for.

For some kinds of cakes and cookies, vegetable oil, ground flaxseed, and even avocado can shorten just as well, but for many recipes, the swap is not so simple. That is because butter functions differently in a bake depending on its temperature. For example, pastries like croissants require butter to be cold and solid. 

Fluffy vegan croissant

Vegan croissants can be just a fluffy as those containing eggs

“You want the butter to laminate and form really thin alternating layers with the flour…so that you’ll have long gluten strands folding around the butter,” Hay says. Butter contains moisture, so if it is warm when folded into pastry, it can melt and seep into other ingredients rather than form layers, resulting in a bready, chewier croissant. “That’s why the butter has to be cold. When the croissant is baked, the butter will melt and flavor the dough, and the moisture will evaporate into steam and lift the pastry on its way up.”

Recipes call for melted butter when they need fat, flavor, and very short gluten chains. However, most cake recipes rely on creaming room temperature butter with sugar before folding in additional ingredients. The creaming method is the process of aerating the butter so that it fills with air bubbles that capture the gases, making it fluffy and creamy. In non-yeasted cakes, their fluffiness derives from this trapped air- expanding as it heats in the oven. Ashley says, “The oil-based cakes are really tender, flat cakes, and they don’t rise the same way that creamed cakes with butter rise.” 

Uncracking eggs

Eggs are among the hardest ingredients to replace because the jobs they do are so integral to the structure of most bakes. Eggs create stability within a batter, help thicken and emulsify sauces and custards, and can even act as a glue or a glaze. Aeration is one of eggs’ most important roles. Whisking traps air bubbles in the liquid egg product, which are surrounded by egg proteins like ovalbumin and ovomucin. These proteins are responsible for the fluffy stiff peaks that precede meringues and souffles. Ovalbumin helps trap those essential air bubbles during whipping while ovomucin has the elastic qualities needed to encase the air while the heat of baking forces it to expand. This expansion is needed for the fluffy, light texture that keeps cakes from feeling stodgy and dense in your mouth. Luckily, there are options like aquafaba that can mimic this effect. Aquafaba meringue recipes also suggest that this egg substitute handles heat well and maintains stability when baked.

Flax seed egg substitute

Flaxseed can be used as an egg substitute

Eggs also contain proteins like lecithin which are amphiphilic, meaning they have a water-loving and water-hating end. These opposing ends bind to oil and water in a mixture, reducing the surface tension between the two liquids, making mixtures more cohesive and less likely to separate. Soy and sunflower lecithin are becoming more commercially available. Usually found in the ingredient list of things like chocolate and peanut butter, soy lecithin is a popular industrial emulsifier that is plant-based and useful for mixes with added fats. Ground flaxseed and soaked chia seeds can also function as emulsifiers, though they may result in a chewier texture and slightly nutty flavor. Because of their versatility in recipes, replacing eggs may require a bit of creativity to make sure that the moisture, texture, and taste they bring to recipes will not be missed. 

For at-home bakers, learning about ways to make their favorite baked goods without the animal products they once relied on can be an exciting and experimental process. For people who still eat dairy and meat, plant-based swaps can help reduce calories and fat in many recipes, which can positively impact health, while also being more inclusive of people who may have dietary restrictions. Either way, plant-based vegan baking alternatives can help everyone have their cake and eat it too.

Thank you to Peter Antonovich and the East Point Velodrome Association! To learn more about upcoming track cycling events and training, visit https://www.dicklanevelodrome.com.

For more Awesome Science of Everyday Life features and other science updates, follow Science ATL on FacebookTwitter, and Instagram!

References:

https://lifehacker.com/the-science-of-baking-in-one-graphic-1773384162

https://www.thekitchn.com/the-science-behind-whipping-egg-whites-in-copper-bowls-221943

https://www.aeb.org/food-manufacturers/egg-functionality/aeration-foaming-structure

https://fasteasybread.com/why-and-how-to-use-lecithin-in-baking-and-cooking/

https://www.americastestkitchen.com/guides/vegan/what-is-aquafaba

The Science of Track Cycling

Action shot of bikes on the Dicklane Velodrome track.

Credit: T.L Lawrence

By Beena Meena

It was a beautiful fall morning and I was biking with my friend Chanel on our way back from an arduous 40-mile ride when we passed the scenic Sumner Park in East Point. Chanel Zeisel started regular bike racing in 2015 and finished her first USA cycling track race in Los Angeles two years later. We entered the park, home to an oval-shaped track; it was similar to a running track but its platform was sloped. As an active road cycling athlete myself, I had heard of track cycling races, but this was the first time I had seen a velodrome: a superelevated, oval-shaped track used in the sport of track cycling.

Georgia’s only Velodrome

The only velodrome in Georgia and one of the only 22 active velodromes in the United States, the Dicklane Velodrome (DLV) was constructed in 1974 as an initiative led by a group of locals who had visited the Munich Olympics and were inspired by the sport of track cycling. One of a kind, the East Point velodrome loops a grassy island, home to an oak tree and a running creek, that provides both cyclists and spectators with a view of natural serenity that contrasts with the adrenaline rush and the thrill of the races. 

The track is  ⅕ mile with a maximum angle of 36 degrees on the banks. My eyes fell on the steep embankments, as we pulled our bikes onto the track. “How on earth can you ride a bike on such a steep surface?!” I gasped with the frightening image of a cyclist sliding down in my head. “Just start from the apron (the flat surface on the base of the track) and move on to the higher elevations gradually after each lap,” Chanel said to me from the top of the ramp, flying by at 40 miles an hour on her bike. “And don’t touch your brakes,” she yelled. Nervously, I clipped in on the pedals of my road bike and decided to stay on the apron.  However, as I gained speed, my bike started to lean towards the ground while bending along the track curves, and I found myself jumping over to the blue strip, the innermost, and the shallowest side of the banks. As I gained more speed, I would jump over to the steeper side. Soon I was riding in the same lane as Chanel along the highest elevation and steepest curves. “It’s all physics, you know,” said Chanel.

It was true, and the laws of physics are what kept me riding on the banks rather than playing out the collision I had imagined when first seeing the DLV. When we bike in a straight line the main forces involved are the gravitational pull by the earth, which is counteracted by the upward normal push by ground and the air resistance/friction that is overcome by pedaling to keep a balanced forward motion.

The physics of track cycling

Cycling on an angled surface or on a curved path is slightly more complex as it also requires an inward force towards the center of the curve to maintain the circular motion. This inward force is called the centripetal force.  A centripetal force is a force induced by a cyclist to continue moving at the same speed while taking a turn by tilting their body towards what would be the center point of the corner of the curved lane. In the absence of this force, the cyclist would end up in a straight line and then bump into a tree or a car. In other words, if a cyclist wants to make a turn at a high speed, they must lean more to create adequate centripetal force. Conversely, if they want to slowly turn the corner, they require less centripetal force and turn the corner without leaning much.

Empty Dicklane Velodrome track

Credit: Beena Meena

The centripetal force can also be experienced while taking a leisurely bike ride through the park. The faster you go, the more you have to lean to maintain speed. However, a bike can only bend so much towards the ground before the friction of the ground and gravity takes over and you lose control of the bike.  An inclined surface on the turns can help you with the lean. A velodrome is an example of such space with a closed-looped track and steep banks on each turn. These banks allow cyclists to lean towards the center of the track while maintaining their balance and staying perpendicular to the inclined surface. Given the design of the velodrome, a cyclist riding on its track is subjected to all of the physical forces previously mentioned: forward momentum, friction, gravitational pull, and centripetal pull. However, the shape and banking of the track make the relationship between these forces slightly more complex than your average ride in the park. Therefore, understanding and applying physics is crucial for professional and avid cyclists who enjoy a fast pace but want to stay safe.

How to ride in a velodrome

To successfully ride in the velodrome, a cyclist’s speed must be directly proportional to the angle of the slope and the turn radius of the turn of the track. For DLV, a cyclist can stay on the track with a maximum speed of 55 miles an hour without falling off the track! To put that in perspective, the average speed for a relaxed ride through the park is about 8-10 mph or up to 15 mph on a well-maintained road. The maximum speed for experienced and extremely well-trained cyclists can reach up to 20-22 mph. Velodromes push these limits to the extreme with maximum speeds of nearly 60-70 miles per hour based on a velodrome’s shape and structure.

The velodrome has made track cycling so captivating it has become one of the most popular sports in the Olympics. It’s no wonder that the Atlanta locals who watched the sport in the Munich Olympics were determined to build a velodrome in their own community, which is still popular among Atlanta cyclists nearly half a century later. 

Today, the Dicklane Velodrome is owned by the city of East Point and managed by a volunteer-based, non-profit organization called the East Point Velodrome Association (EPVA). I sat down with Peter Antonovich, the President, and Director of EPVA, to learn more about track cycling and DLV. Peter shares that the velodrome track provides a safe and open space for cycling without concerns of traffic, potholes, or unexpected curves.

Track cycling training

“Track cycling could be intimidating at first but the more you practice, the more you get accustomed to it,” Peter says. Even when a prospective track cyclist understands how the laws of physics apply, they still need extensive training before they can race. The DLV provides certification classes on the weekends during the on-season, which starts in March and ends at the beginning of winter. A track certificate is mandatory to participate in the races. “Newcomers learn how to ride safely on the track through lessons taught by experienced volunteers,” Peter told me. The certification course at DLV costs $60, including the cost of a bike rental. Once you earn the certificate you can join the beginner class to train and race on Tuesday nights. The races are $15 to participate, and free for spectators.

Peter explained that the track bikes are somewhat different than the traditional road bikes. They don’t have brakes and are fixed gear. The only way to control the speed is by pedaling. “You use your legs to slow down and speed up,” Peter says. The idea of not being able to break could be frightening at first, but it is actually safer while you are on the track. You must have a minimum speed in order to keep exerting the centripetal force and moving on the curves, otherwise, gravity pulls you down the slope. “You brake, you fall,” Peter warns.

Chess on wheels

“Track races demand strategic planning and tactics from the cyclists,” Peter says, emphasizing the psychological skill as well as the rider’s ability to pedal fast. The DLV provides a safe and healthy competitive place for cycling enthusiasts to train both their physical and mental fitness. “It’s chess on wheels,” says Peter, smiling.

Whether you would like to put the science of cycling into action with a relaxed ride or with a new hobby of track cycling, understanding a few basic principles of physics will only improve your experience. If you are more inclined to the former, I recommend cycling on the Freedom Park Trail and taking notice of how the winding path will require you to slow down and/or tilt your body at each turn. You can always watch the track cycling races from the safety of the sidelines! If you’re set on trying out track cycling, you can feel fortunate to live so close to a velodrome and get involved with the Dicklane Velodrome. 

Thank you to Peter Antonovich and the East Point Velodrome Association! To learn more about upcoming track cycling events and training, visit https://www.dicklanevelodrome.com.

For more Awesome Science of Everyday Life features and other science updates, follow Science ATL on FacebookTwitter, and Instagram!

The Science Behind Urban Scooters

Photo of three electric scooters parked on a curb next to an empty intersection.

By Nkosi Muse

Although we don’t have flying cars and shiny, metallic cities just yet, technology has certainly grown and evolved exponentially in recent years. A large number of these technological advances have been in the realm of transportation: electric cars, buses, and trains. If you live in a major city such as Atlanta, chances are high that you have seen clusters of electric scooters, bicycles, and other gadgets available to help you get around the city. Public response to these vehicles has been mixed, with some people raving about the accessibility and convenience of scooters, while others complain about safety concerns and discarded scooters clogging up sidewalks.

The history of electric scooters

Manufacturer image of a SegwayThe thing is, these scooters aren’t really new pieces of technology, as companies such like Razor and Segway have been selling electric scooters for years. However, they had never been utilized at a major scale until entrepreneurs Matt Ewing, Michael Keating, and Dan Riegel founded Scoot Rides, Inc. in 2011. In 2012, they issued a line of electric mopeds for short-term rental using an app on your phone, followed by electric scooters, or “kicks,” and electric bicycles. The trend picked up, and the rise of the e-scooter industry soared after Bird and Lime introduced their line of scooters in 2017.

In a relatively short amount of time, Bird acquired Scoot Rides and has expanded to almost 100 cities globally, amassing a net worth of approximately 2 billion dollars. Its closest competitor, Lime, racked up over 11 million rides of its electric fleet in 2018, building a net worth of 1.1 billion dollars. Rideshare apps Lyft and Uber also caught on to the trend and added a fleet of scooters to the streets in 2018 to accompany their already extremely profitable driving market. This new method of transport complements the shift towards more environmentally friendly transportation, as many of these companies track their positive impact on the environment and make efforts to be climate-friendly in other areas as well. For example, Lime claims their scooter rides have helped riders avoid more than 1.2 million car trips this year, reducing the amount of carbon emitted into the atmosphere.

Getting down with scooter science

Headshot of Perry Johnson

Perry Johnson, data scientist

While all of these electric scooter companies seem to be masters of business and economics, they are utilizing and largely benefitting from the new and rapidly expanding field of data science. Data sciences are behind almost every advanced piece of technology we access and use, especially if it interacts with the internet. This science has established programming languages as a new universal language, in which we can communicate with computers (big or small), and computers can communicate with each other.

“There is a science behind the placement and operation of these scooters in different cities.”

Programming languages also drive the apps that we use to rent and ride our scooters. I spoke with data scientist Perry Johnson who shared his insight on the data science behind the operation of our beloved (or hated) electric scooters. “There is a science behind the placement and operation of these scooters in different cities,” he says. A city’s population is a heavily weighted factor in whether a scooter company (e.g. Bird) will select it to deploy its fleet of scooters, but the data for the scooters themselves rely on something called an “application programming interface” or “API.” 

What is an API?

Think of an API as a kiosk at the airport: when checking in, the kiosk provides you with a multitude of options such as print bag tags, change your seat, or print your boarding pass. Pressing the button for the kiosk to carry out one of these actions is similar to the function of an API. An API controls what happens between the time you press the button and receive an output. If you ride these scooters, whether or not you realize it, you are using an API.

“These APIs contain scooter data from scooter latitude and longitude coordinates, to battery levels, to scooter IDs,” Perry continued. “When you open your Bird scooter app, your phone is essentially making a call to the API, which in return shows you the location of scooters around you, their battery level, and their ID.” There is also a Nest ID, which corresponds to the “nest” a scooter is placed in—a bird in its nest, if you will! If you happen to see a bunch of scooters in one place, that is most likely a nest, whose location is usually closely related to recorded scooter “hot routes,” city landmarks, and scooter battery level, according to Perry. Any scooter without a Nest ID is most likely a scooter that was taken out of its nest or randomly placed—such as when a rider drives a scooter from a nest to a random, isolated destination.

An innovative approach

The app not only uses data science for its users but for its “workers” as well. Scooter companies such as Bird hire people to charge their scooters and to place them back on the streets for use. To know which scooters to pick up, the app notifies the user which scooters in the area have low battery. When they are fully charged, the app determines where to place the scooters based on nest locations, demand, hot routes, battery, landmarks, etc.

Three Bird scooters parked in a row

Now that you know a little more about these scooters, you may be saying to yourself: “why didn’t I think of this to get rich?” Trust me, so am I. Innovations that deploy an API have become so familiar that they can sometimes seem simple, but there is usually a lot more at work within the machines, computers, and applications we routinely use and view as ordinary. However, the next time you scan a scooter’s bar code to go for a ride (with your helmet on, of course), you’ll have a better understanding of everything the device in your hand just did for you.

How has COVID-19 affected the e-scooter industry?

Like many other public amenities and resources/tools, the presence of the COVID-19 pandemic has sharply reduced the amount of scooters that coat the streets of what was once the Downtown Atlanta scooter hotspott. However, just because quarantine has limited the use of scooter application programming interfaces (APIs), it does not mean that APIs are not being used elsewhere!

In fact, if you use an app like Twitter, Instagram, or Facebook, an API is most likely what is gathering the information from the web server and displaying it on your phone—especially when you look for a specific tweet, profile, or hashtag. Moderating our fun and convenient electric scooter rides are just one of the ways APIs are utilized.

Thank you to Perry Johnson for sharing his data science expertise! To learn more about his work, visit http://perryrjohnson.com/.

For more Awesome Science of Everyday Life features and other science updates, follow Science ATL on FacebookTwitter, and Instagram!

How Ink Evolved: The History and Science of Tattoos

Young man with colorful tattoo sleeve.

By Audra Davidson

As most people would be, I was a little nervous. Maybe a bit more than a little. Shiny, sterilized tools loomed just below eye-level, neatly arranged alongside a crowd of sanitizing chemicals. Mind racing and growing increasingly self-conscious about my above-average sweat production, I almost called the whole thing off. The cold shock of disinfectant on my skin finally snapped me into focus; I was really about to do this. I was just glad I couldn’t see the needles.

Biting my lip and clenching my fist to feign toughness and hide my pain, I walked out of that appointment with a swollen lip, nail marks on my palm, and permanent artwork on my ribs.

While it wasn’t the most painful experience I’ve had to date, getting my first tattoo certainly wasn’t the least. According to the Pew Research Center, I was now one of the 40% of Americans aged 18-29 to have a tattoo. Body ink has become so popular in recent years that the US military has had to loosen their strict tattoo restrictions to keep their recruiting pool from shrinking. Why do so many people purposely injure themselves to create these elaborate and permanent scars? Keep reading to learn more about the history and science of tattoos.

An Artistic Rite of Passage

Ouroboros tattoo by Atlanta tattoo artist, Dustin Cramer.

Dustin Cramer puts a spin on the ouroboros, an ancient symbol representing wholeness and the cycle of life. (Instagram: @dustycramer)

“It’s like hanging your favorite art in your home, but of course permanently,” explains Dustin Cramer, a tattoo artist at SparrowHawk Studio in Atlanta. In addition to the deep artistic component, a 2015 Harris Poll showed that inked individuals feel that their tattoo makes them feel sexy and rebellious, as well as strong, spiritual, healthy, and intelligent. This modern rationale for body ink is not too far off from that of more traditional tattoo origins. A practice that has been around for over 4,000 years, tattoos are considered a rite of passage in many cultures, believed to ward off illness and illustrate physical endurance. The ritual of elaborate body inking is deeply spiritual, and studies have indicated a belief that tough bodies and minds create thoughtful warriors and leaders.

Despite the longevity of tattooing, biologists have long been puzzled by this ritual of self-injury. After all, purposefully exposing oneself to injury and risk of infection doesn’t seem like the best way to ensure survival. Yet recent theories suggest that the cultural origins of tattoos may have a biological basis in a phenomenon referred to as “costly honest signaling.”

Costly Honest Signaling

A perfect example of costly honest signaling can be found in one of my favorite movies from the early 2000’s: A Knight’s Tale. In a story about an underdog jousting crew, Heath Ledger’s character, William, must hide his humble origins to win tournaments and the heart of the noble lady Jocelyn. Due to the shady dealings of his arch-nemesis, William becomes severely injured during the final jousting match. Throwing a Hail Mary, he removes all his now ruined armor, charging ahead with no protection. This display is both costly and honest because removing armor is a potentially deadly move that is impossible to fake. While extremely risky, this dangerous act is meant to signal toughness and confidence in the character’s ability to win, shaking the confidence of his dastardly opponent. A successful attempt at costly honest signaling bolsters his romantic prospects and ultimately wins him the tournament.

With the risk of life-threatening infections and a permanent marking that is nearly impossible to fake, biologists believe ancient tattoos are another form of costly honest signaling. Like Williams’s display of bravery to capture victory and Jocelyn’s affections, body ink may have been used as an evolutionary signal to potential partners about the ability to withstand physical pain and fight off infections. By attracting mates, thus increasing chances of reproduction, the pain and risks of this ritual of self-injury may have had cultural and evolutionary benefits that outweighed the costs.

Developing Tattoo Immunity

Dr. Christopher Lynn, Associate Professor in the Department of Anthropology at the University of Alabama, has investigated costly honest signaling theory through the lens of the immune system. Lynn and colleagues compared overall tattoo experience in American Samoans, a culture in which body ink plays an integral role, to markers of immune system response. Immune response was assessed by measuring the amount of two substances in the subjects’ saliva: cortisol and IgA. Cortisol is a hormone released during stress to suppress the immune system and return it to baseline activity, while IgA is an immune marker that serves as the first line of defense for bacterial infections and viruses.

Individuals with more tattoo experience may have immune systems habituated to frequent stressors to the skin, priming them to fight off infections.

Compared to tattoo novices, Lynn’s research shows those with more overall experience with tattoos had elevated levels of IgA in their saliva after getting a new tattoo. Therefore, individuals with more tattoo experience, such as more inking sessions or years having tattoos, may have immune systems habituated to frequent stressors to the skin, priming them to fight off infections.

Photo of a Samoan man receiving a traditional tattoo.

An American Samoan tattoo session. Tattoos are incredibly important to Samoan culture, signifying strength and honor. Traditionally, tattoos are given using the hand-poke method.

Tattoos are thought to have served as a costly honest signal of toughness and health for thousands of years. Although tattoos are likely not the cure to the common cold, Lynn’s work demonstrates that the cultural and evolutionary history of permanent body art may have biological impacts. And while it might not make me a great warrior, that just might help me fight through the pain during my next tattoo.

Thank you to Dustin Cramer and SparrowHawk Studio for their tattoo expertise! To see more of Dustin Cramer’s work, follow him on Instagram at @dustycramer.

For more Awesome Science of Everyday Life features and other science updates, follow Science ATL on FacebookTwitter, and Instagram!

 


References:

  1. Heimlich, R. Tattoo taboo. Pew Research Center (2010). Available at: https://www.pewresearch.org/fact-tank/2010/03/24/tattoo-taboo/. (Accessed: 8th December 2019)
  2. Belyh, A. The Army Tattoo Policy: What’s Allowed and What’s Not. Cleverism (2019). Available at: https://www.cleverism.com/army-tattoo-policy-whats-allowed-and-whats-not/#:~:targetText=The army does not limit,sleeves%2C neck%2C and ears. (Accessed: 8th December 2019)
  3. Shannon-Missal, L. Tattoo takeover: Three in ten Americans have a tattoo, and most don’t stop at one. The Harris Poll (2016). Available at: https://www.prnewswire.com/news-releases/tattoo-takeover-three-in-ten-americans-have-tattoos-and-most-dont-stop-at-just-one-300217862.html#:~:targetText=The Harris Poll&targetText=But one thing’s for sure,%25) have two or more. (Accessed: 8th December 2019)
  4. Krutak, L. F. Spiritual Skin: Magical Tattoos and Scarification: Wisdom, Healing, Shamanic Power, Protection. (Edition Reuss, 2012).
  5. Mallon, S. & Galliot, S. Tatau: A History of Samoan Tattooing. (2018).
  6. Bird, R. B., Smith, E. A. & Bird, D. W. The hunting handicap: Costly signaling in human foraging strategies. Behav. Ecol. Sociobiol. 50, 9–19 (2001).
  7. Koziel, S., Kretschmer, W. & Pawlowski, B. Tattoo and piercing as signals of biological quality. Evol. Hum. Behav. 31, 187–192 (2010).
  8. Sapolsky, R. M. Endocrinology of the stress-response. in Behavioral endocrinology (eds. Becker, J. B., Breedlove, S. M., Crews, D. & McCarthy, M. M.) 409–450 (MIT Press, 2002).
  9. Marcotte, H. & Lavoie, M. C. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol. Mol. Biol. Rev. 62, 71–109 (1998).
  10. Lynn, C. D. et al. The evolutionary adaptation of body art: Tattooing as costly honest signaling of enhanced immune response in American Samoa. Am. J. Hum. Biol. 1–12 (2019). doi:10.1002/ajhb.23347