The Science Behind Neon Lights with The Neon Company and Georgia Tech

You can’t wander far in Atlanta without seeing the bright, colorful work of The Neon Company. From The Vortex’s iconic skull logo, to the Majestic Diner’s massive outdoor signage, to the hundreds of custom pieces for TV shows and movie sets around the city, the team at The Neon Company specializes in creating neon signs that satisfy the visions of their customers. What most people don’t realize is that each piece created is a result of rare artistic craftsmanship and calculated science.

Glowing neon creations

The Neon Company studio is filled with hundreds of beautiful, glowing neon creations.


Opened in 1984, The Neon Company has perfected the art of creating neon signage and art for the bustling city of Atlanta. Gregg Brenner, the founder, president, and CEO (Chief Electron Officer), started the business with a background in science. With an undergraduate degree in biochemistry, Gregg taught high school science in DeKalb County for five years. During his time teaching, playing with neon became a hobby of Gregg’s and grew to become something much more after he received his Master of Science degree from Georgia State University.
We wanted to hear more about the science behind Gregg’s colorful light displays, so we popped into The Neon Company studio along with another local expert on the science of color and light. Eric Shen, a chemist from Georgia Tech, works in the field of organic electronics. His research on electrochromic materials – materials that change colors when zapped with an electric current – provides him with a unique perspective on how color and light can be manipulated. Eric helped give us some insight into what’s going on at the atomic level with the fascinating light displays that The Neon Company produces, along with how it could connect to his own research.
Eric and Gregg talking

Eric and Gregg discuss the many connections between their two fields of work. In the end, they both deal with light, energy, and electrons!


The neon process can be broken into two parts: the art and the science. Creative design and glass bending involve a lot of artistry. Those steps are immediately followed by the introduction of science and technology when assembling and installing the signs.

Creative Design

The Neon Company receives many neon requests ranging in difficulty.
“We get everything from folks who are just creating their business and don’t know what they want, to well-established companies like Coca-Cola who need a custom job,” said Gregg.
Once the team has an idea of what the job entails, the process starts off at a Windows 98 computer. Yes, you read that right … A graphic for the neon sign is made on a Windows 98 “art” program, which Gregg explains is “so old that no one writes viruses for it.” The computer sends the graphic to a plotting machine that uses a Sharpie to draw out the design on a piece of elongated paper. This outline is used as a stencil for the neon glass benders to work against.

Windows 98 for stencils

Though some might look at these machines as part of the stone age, Windows 98 provides a dependable server for the programs and equipment needed to produce accurate stencils.

Glass Bending

Once the patterns are made, the work gets handed off to Blaze Pearson and Sue Erck, the company’s neon glass benders. Blaze has been bending glass for about 15 years while Sue and Gregg have been bending for 30 years.
“This is the highest level of skill in the shop. It really takes a lot of practice,” Gregg explained.

Hand drawn stencil

Blaze uses a hand drawn stencil to create a star out of coated glass.


The printed outline is placed under a brass screen top so that the glass benders can lay hot glass on top of the paper as they work. Using a variety of flames and torches, the glass bender heats up areas of the glass tube that needs to be bent in order to make the correct shape, but as the glass bends, the bent area will start to flatten, similar to how a garden hose would. In order to keep the correct diameter, Blaze and Sue use a “blow-hose” to blow air into the tube near those bends.
Blaze and Sue using a blow-hose

Blaze and Sue use a “blow-hose” to maintain the diameter of the tubes when bending.


The glass they work with hardens quickly, which means there is less time to fix mistakes. Gregg explained that abstract neon signs are the easiest while precise lettering and large circular shapes are the trickiest. Since the variety of signs they make are so large, the team at The Neon Company is never bored.
Heating Glass

Sue wears goggles while working, because they help filter out specific wavelengths of light from the flare so she can see which areas of the glass are heating better. You can see the difference in the two images above!


“You really have to think it through but that’s part of what makes the job really fun,” said Blaze. “Every day is different and every piece of glass is different.”
Next, electrodes are added to the ends of each piece, heated, and welded together through a process called the “kissing technique.”
"Kissing Technique"

Deemed the “kissing technique”, electrodes are added to the ends of each piece, heated, and welded together before the final assembly.

Assembly

Once the tubes have been properly shaped, it’s time to introduce the chemistry. Before you can fill the tubes with gases that light up, you have to clear out any air and moisture from inside the tubes with a vacuum pump. After the vacuum does its job, a zap of electricity is added while raising the temperature of the tube in order to sterilize the inside and eliminate any remaining  air.
Once the tube is finished sterilizing, the team has to wait for it to cool down to a temperature low enough to add in the gases, which gives the neon sign its color.

Gregg Brenner showing bombaring process

Gregg walks us through the bombarding process which cleans and prepares the tubes to be filled with gas.


The Neon Company mainly uses two gases – neon and argon. Both of these gases are clear when they are added to the tubes, but when electricity is added, they glow: neon glows red/orange in clear glass, and argon gives off a blue/lavender light in clear glass.
So how do these gases go from clear to colored and why do they light up?
“With neon lights, you are applying a huge voltage, which energizes the electrons of the gas atoms. Eventually, all that energy has to go somewhere, and it gets released as light,” Eric tells us. The unique color associated with each gas is connected to the number and arrangement of electrons in the atoms making up the gas.
Powder coated tubes

Powder coated tubes (shown in image on the left) distribute light more evenly compared to other colored tubes. The difference can be seen in the two tubes shown in the right image.


Now, as we know, neon lights come in a variety of colors, not just red and lavender. Gregg shows us how he can manipulate the color by using either argon or neon, changing the tube color through stained glass or powder coating (which distributes light more evenly) and by adding mercury. A few drops of liquid mercury will vaporize in the tube and create other color options. Once the correct gas has been added, the tube is sealed off and gets set up for installation.

Installation

The pieces are then connected to a transformer to be powered. The transformer generates about 15,000 volts and 60 milliamps, which is what provides that jolt of energy to the electrons in the atoms of the gas in the tube. As Eric told us, the energy goes in as electricity and comes out in the form of light and heat, giving us the neon lights that glow as they should. After being correctly powered, the neon signs are ready to be installed.

Gregg Brenner comparing transformers

Gregg shows us a very old transformer (shown in the right image) compared to the types of transformers used today (shown in the left image).


Each and every neon sign and piece of art that The Neon Company produces is the result of incredible skill, science, and passion. In a world where businesses are trying to cut labor and have everything be run through machines and computers, Gregg, Blaze, and Sue at The Neon Company keep their craftsmanship alive and well.
“The neon industry is shrinking. It’s now more of a small, decorative industry [compared to the lighting industry as a whole],” commented Gregg. Eric, however, had other ideas on how to grow the field. As we were clearing out, the two started talking about how they should experiment with coating Gregg’s neon tubes with Eric’s electrochromic paint-like films to manipulate the color of the lights even more.
Who knows if that will ever come to fruition, but what we know for sure is that the city of Atlanta continues to glow bright with The Neon Company’s handcrafted, neon signage lighting its streets.
Neon Company and Georgia Tech
A big thank you to The Neon Company and Eric Shen from Georgia Tech for walking us through the magical science behind neon lights.
Stay tuned to our website, Facebook, Twitter, and Instagram for more Awesome Science of Everyday Life features and other festival updates!

The Science Behind Beer with Orpheus Brewing & Georgia State University

Have you ever wondered what gives beer its complex, distinct taste? What makes a Budweiser taste different from a locally-brewed IPA? Or a stout taste different from a pale ale? The science behind beer is both fascinating and intricate, so we turned to Orpheus Brewing founder Jason Pellett and Georgia State University microbiologist Dr. Chris Cornelison to break it down for us.

Jason Pellett

Jason Pellett
Jason Pellett is the founder, president, and brewmaster of Orpheus Brewing here in Atlanta. As a brewery, Orpheus has historically focused on sour beers. Their flagship brew, Atalanta, (pictured below) was actually the first packaged sour beer made in Georgia! The art and science of making beer is an important part of the process for Orpheus, so the team undergoes internal training on a regular basis to examine and explore the biochemical processes that happen during the beer making process.
Holding Orpheus beer
Jason took some time to answer a few of our questions about Orpheus Brewing, his journey in beer making, and his take on the science behind beer.

When and how did you first become interested in brewing?

I brewed for the first time in my early twenties when it just went along with making everything else from scratch, but that was short lived. I really became interested in brewing after becoming enamored with sour beers back in 2009. I spent about a year just learning everything I could about how sour beers are made before starting to homebrew again in 2010. Though I didn’t think I’d ever actually be able to open a brewery, I focused my homebrew on sours and saisons and kept my eyes on opening a brewery of my own one day.
Kegs

What scientific element of the beer making process interests you the most?

We’re dealing with live cultures, and everything we do influences their ecosystem, which in turn impacts the beer itself. Many of the flavors created by synergistic reactions within mixed culture fermentations, fermentation processes, and hop compounds are not understood very well. Exploring this area is where most of the art of making beer happens, but it’s also an area ripe for further research.
Pouring beer

What is your favorite beer, and can you tell us the microbiology behind that beer that makes it appealing to you?

The beer I’ve been drinking the most lately is Noise and Flesh, our house barrel-aged beer. The wild culture that we use to sour many of our beers (Atalanta, Wandering Blues, and Serpent Bite, Sykophantes) has a diverse microbe population. The souring utilizes various strains of lactobacillus to make lactic acid, but there’s also a large yeast population. For Noise and Flesh we use the culture to not just sour, but also to ferment the beer. We get the sour taste from the lacto, and great stone fruit esters from the yeast.
Pouring and clinking beer

Dr. Chris Cornelison

Orpheus team
Dr. Chris Cornelison (pictured center in the image above) is an applied microbiologist and adjunct professor at Georgia State University. His area of focus is applied and environmental microbiology, which means he studies microbes in their natural environment (presence, distribution, and function) as well as how to use specific microbes or microbial processes for a specific purpose (making beer, treating waste water, and increasing plant growth/productivity). In general, microbiology involves the study of microorganisms including bacteria, archaea, algae and fungi.
We asked Dr. Cornelison to answer a few questions about his specialty and the many scientific processes and steps that are involved in making beer.

What fascinates you most about microbiology?

Microorganisms are the reason all other “higher “organisms exist. They created and sustain our atmosphere, cycle our nutrients, allow us to digest food, clean up our waste, and make many of our medicines. They can live on light and inorganic molecules, as well as at the hottest and coldest places on the planet- even in radioactive wastes. By cell number, a human being is more bacteria than human. The more I learn about the significance and versatility of microorganisms, the more interesting they become.
Creating beer

Describe the microbiological process that is involved in the creation of beer.

The basic material of beer is simply yeast food. Water and grain are boiled so that the naturally occurring enzymes in the grain will convert complex sugar polymers into small fermentable sugars. This solution (wort) is cooled and inoculated with yeast (naturally or intentionally). The yeast consumes the sugar and converts it to ethanol and carbon dioxide, as well as generates additional low concentration byproducts that contribute to the overall flavor of the beer. At some point, all the sugar will be consumed or the yeast will produce more ethanol than they can tolerate and the process will stop. An additional role of microbes in beer is as spoilage organisms. These are typically acid producing bacteria or wild yeast that produces byproducts not intended in the beer and therefore considered off-flavors.
Barrel of beer

What microbiological factors affect the various flavor elements of beer?

The yeast strain selected or the natural consortia of microbes associated with the grains and water if the brewer is choosing to use a natural fermentation impacts the flavor of beer. Also, the composition of the wort and the temperature of the fermentation will influence metabolic activity of the yeast and therefore the diversity and concentration of byproducts they produce.
Beer creation process

Once the beer is made, how does microbiology come into play in terms of the packaging and distribution of beer?

The brewer may choose to use bottle conditioning, where yeast carbonates the bottled beer. A small amount of sugar and yeast are added to the beer when bottled. The yeast rapidly consumes the sugar and makes carbon dioxide in the bottle. The carbon dioxide is forced into the solution, carbonating the beer. The yeast dies when the sugar is fully consumed and settles to the bottom. Additionally, this is a typical route of introduction of spoilage organisms, therefore strict sanitation practices are typically maintained on the filling lines.
Beer storage and packaging

What is the coolest or weirdest fact about the science behind beer you’ve ever heard?

Lager yeast doesn’t appear to exist naturally outside of the brewing environment. It is a hybrid yeast which wasn’t identified in nature until 2011. Some lucky Germans just happened to have this rare wild yeast show up in their brewery and hybridize (a very rare event) with ale yeast to create the lager yeast that dominates Macro-brewing globally, a multi-billion dollar industry.
Beer creation machinery

What is your favorite beer, and can you tell us the microbiology behind that beer that makes it appealing to you?

It depends. I drink a lot of different stuff and always enjoy trying something new. Right now, I have been drinking traditional Belgian beers, Leffe, Hoegaarden, etc. But I also have some local favorites including Orpheus Atalanta and Eventide’s Kolsch. As the weather cools, I will incorporate some stouts and brown ales into the mix. The lineup at Orpheus has me excited from a microbiological standpoint. They are doing some pretty creative stuff. Their use of the bacterial mother culture for souring as well as various barrel-aging processes creates some very unique products.
Beer planning
A big thank you to Georgia State and Orpheus Brewing for walking us through the science behind beer. Stay tuned to our website, Facebook, Twitter, and Instagram for more Awesome Science of Everyday Life features and other festival updates!

The Awesome Science of Everyday Life

Every other month we will be collaborating with different Atlanta-area organizations and scientists to explore the sceince behind everyday life. Be sure to check back for the latest posts and behind the scenes looks, and stay tuned to our sociel media channels to get a sneak peek at upcoming collaborations!